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ABSTRACT

The colors and chemical abundances of early-type galaxies at redshifts z < 0:3 are studied

using a sample of nearly 9000 galaxies, selected from the Sloan Digital Sky Survey using mor-

phological and spectral criteria. In this sample, redder galaxies have larger velocity dispersions:

g� � r� / �0:26�0:02. Color also correlates with magnitude, g� � r� / (�0:025 � 0:003)Mr� ,

and size, but these correlations are entirely due to the L � � and Ro � � relations: the pri-

mary correlation is color��. The red light in early-type galaxies is, on average, slightly more

centrally concentrated than the blue. Because of these color gradients, the strength of the color{

magnitude relation depends on whether or not the colors are de�ned using a �xed metric aperture;

the color�� relation is less sensitive to this choice.
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Chemical evolution and star formation histories of early-type galaxies are investigated using

co-added spectra of similar objects. The resulting library of co-added spectra contains spectra

that represent a wide range of early-type galaxies. Chemical abundances correlate primarily with

velocity dispersion: H� / ��0:24�0:03, Mg2 / �0:20�0:02, Mgb / �0:32�0:03, and hFei / �0:11�0:03.

At �xed �, the population at z � 0:2 had weaker Mg2 and stronger H� absorption compared to

the population at z � 0. It was also bluer. Comparison of these colors and line-strengths, and

their evolution, with single-burst stellar population models suggests a formation time of 9 Gyrs

ago, consistent with a Fundamental Plane analysis of this sample.

Although the Fundamental Plane shows that galaxies in dense regions are slightly di�erent

from galaxies in less dense regions, the co-added spectra and color{magnitude relations show no

statistically signi�cant dependence on environment.

Subject headings: galaxies: elliptical | galaxies: evolution | galaxies: fundamental parameters

| galaxies: photometry | galaxies: stellar content

1. Introduction

This is the fourth in a series of papers which studies the properties of early-type galaxies at relatively

low redshift z � 0:3. Paper I (Bernardi et al. 2003a) describes how we extracted the sample from the

SDSS database, and how the photometric and spectroscopic parameters (luminosities, e�ective radii, surface

brightnesses, colors and velocity dispersions) were estimated. It also provides the tables of these parameters.

Paper II (Bernardi et al. 2003b) studies the luminosity function, and various early-type galaxy correlations

in multiple bands (g�, r�, i� and z�). Paper III (Bernardi et al. 2003c) studies the Fundamental Plane, and

its dependence on wavelength, redshift and environment. In this fourth paper, we study the colors and the

spectral line indices of the galaxies in our sample, both of which correlate strongly with velocity dispersion

�.

Section 2 presents color{magnitude and color{velocity dispersion relations. It shows that the primary

correlation is color{�; color{size and color{magnitude relations are a consequence of the fact that size and

magnitude correlate with �. In Section 3, the spectra of the galaxies in our sample are used to study if and

how the chemical composition of the early-type galaxy population depends on redshift and environment.

The signal-to-noise ratios of the spectra in this SDSS sample are substantially smaller than the S=N = 100

required to estimate the Lick indices reliably. Therefore, Section 3.1 describes the procedure we have adopted

for obtaining reliable estimates of absorption line strengths and presents the line indices measurements we

used in our analysis. One of the results of this paper is a library of co-added spectra which contains spectra

that represent a wide range of early-type galaxies. This library is available electronically. Sections 3.2 and 3.3

show correlations with velocity dispersion and color respectively. Section 3.4 compares these measurements

with predictions from single burst stellar population models, and Section 3.5 studies how these trends depend

on environment.

We have chosen to present results for Mg2 (measured in magnitudes), and Mgb, hFei and H� (measured

in Angstroms), where hFei represents an average over Fe5270 and Fe5335. Mg2 and Mgb are alpha elements,

so, roughly speaking, they reect the occurence of Type II supernovae, whereas Fe is produced in SN Ia. All

these line indices depend both on the age and the metallicity of the stellar population (e.g., Worthey 1994),

although Mg and Fe are more closely related to the metallicity, whereas the equivalent width of H� is an

indicator of recent star formation. An analysis of other indices on a similar set of co-added SDSS spectra is
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presented in Eisenstein et al. (2003).

Except where stated otherwise, we write the Hubble constant as H0 = 100h km s�1Mpc�1, and we

perform our analysis in a cosmological world model with (
M;
�; h) = (0:3; 0:7; 0:7), where 
M and 
�

are the present-day scaled densities of matter and cosmological constant. In such a model, the age of the

Universe at the present time is t0 = 9:43h�1 Gyr.

2. The color{magnitude and color�� relations

The colors of early-type galaxies are observed to correlate with their luminosities, with small scatter

around the mean relation (e.g., Baum 1959; de Vaucouleurs 1961; Sandage & Visvanathan 1978a,b; Bower,

Lucey & Ellis 1992a,b). In this section we examine these correlations using the model colors output by the

SDSS photometric pipeline. Section 2.1 shows that the color{magnitude relation in our sample is evolving:

the population at higher redshift is bluer. It also shows that the primary correlation is actually color

with velocity dispersion: color{magnitude and color{size relations arise simply because magnitude and size

are also correlated with velocity dispersion. Section 2.2 shows that the color{velocity dispersion relation

exhibits no signi�cant dependence on environment. It has been known for some time that giant early-type

galaxies are reddest in their cores and become bluer toward their edges (e.g., de Vaucouleurs 1961; Sandage

& Visvanathan 1978a). Therefore, the strength the color-magnitude relation depends on how the color is

de�ned. This is the subject of Section 2.3.

2.1. Galaxy colors: evolution

We begin with a study of the color{magnitude relation in our data set. Estimating the slope of this

relation is complicated because our sample is magnitude limited and spans a relatively wide range of redshifts,

and because the slope of the color{magnitude relation is extremely shallow. At any given redshift, we do

not have a wide range of magnitudes over which to measure the relation. If we are willing to assume that

this relation does not evolve, then the di�erent redshift bins probe di�erent magnitudes, and we can build

a composite relation by stacking together the relations measured in any individual redshift bin. However,

the shallow slope of the relation means that small changes in color, whether due to measurement errors or

evolution, result in large changes in M . Thus, if the colors of early-type galaxies evolve even weakly, the

slope of the composite color{magnitude relation is drastically a�ected. We can turn this statement around,

of course, and use the color{magnitude relation as a sensitive test of whether or not the colors of the galaxies

in our sample have evolved.

Figure 1, the relation between the absolute magnitude in r� and the g� � r�, r� � i� and r� � z� colors,

illustrates our argument. We have chosen to present results for these three colors only, since the other colors

in our dataset are just linear combinations of these, and because, as described in Paper I, the r� band plays

a special role in the SDSS photometry. Briey, this is the band in which the SDSS spectroscopic sample is

selected, and this band has a special status with regard to the SDSS `model' colors (c.f. Section 2.3).

The �gure was constructed by using the same volume limited subsamples we used when analyzing the r�

luminosity function in Paper II. Symbols with error bars show the median, and the error in this median, at

�xed luminosity in each subsample. Dashed lines show the mean color at �xed magnitude in each subsample;

the slopes of these mean relations and the scatter around the mean are approximately the same (we will
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Fig. 1.| Color versus r� magnitude in volume limited subsamples. Symbols show the median color at

�xed luminosity as measured in the di�erent volume limited subsamples, error bars show three times the

uncertainty in this median. Dashed lines show linear �ts to the relation in each subsample. The slope of

the relation is approximately the same in all the subsamples, although the relations in the more distant

subsamples are o�set blueward. This o�set is greater for the g� � i� colors than for r� � i�. Because of this

o�set, the slope of a line which passes through the relation de�ned by the whole sample is very di�erent

from the slope in each of the subsamples.
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Fig. 2.| Same as previous �gure, but now showing color versus velocity dispersion. Redder galaxies have

larger velocity dispersions. Dashed lines show that the slope of the relation is approximately the same in

all the subsamples, but that the relations in the more distant subsamples are o�set blueward. The o�set is

similar to that in the color{magnitude relations.
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Table 1: Maximum-likelihood estimates of the joint distribution of color, r� magnitude and velocity

dispersion and its evolution. At redshift z, the mean values are C� � Pz, M� � Qz, and V�, and the

covariances are h(C �C�)(M �M�)i = �2CM = �C�M �CM etc.

Color C� �C V� �V M� �M �CM �CV �V M Q P

g� � r� 0.736 0.0570 2.200 0.1112 �21:15 0.841 �0:361 0.516 �0:774 0.85 0.30

r� � i� 0.346 0.0345 2.200 0.1112 �21:15 0.841 �0:301 0.401 �0:774 0.85 0.10

r� � z� 0.697 0.0517 2.203 0.1114 �21:15 0.861 �0:200 0.346 �0:774 0.85 0.15

quantify the slopes of these relations shortly) but the zero-points are signi�cantly di�erent. All three color{

magnitude relations show qualitatively similar trends, namely a tendency to shift blueward with increasing

redshift. For example, r�� i� is bluer by about 0.03 mags in the most distant subsample than in the nearest,

whereas the shift in g� � i� is closer to 0.09 mags. Because of the blueward shifts, the slope of a linear �t to

the whole catalog, over the entire range in absolute magnitudes shown, is much shallower than the slopes of

the individual subsamples.

How much of the evolution in Figure 1 is due to changes in color, and how much to changes in luminosity?

To address this, Figure 2 shows the same plot, but with r� magnitude replaced by velocity dispersion. As

before, the di�erent dashed lines show �ts to the color-� relations in the individual subsamples; the slopes

of, and scatter around, the mean relations are similar but the zero-points are di�erent. The magnitude of

the shift in color is similar to what we found for the color{magnitude relation, suggesting that the o�sets

are due primarily to changes in colors rather than luminosity.

At �rst sight this might seem surprising, because single-burst models suggest that the evolution in the

colors is about one-third that of the luminosities. However, because the slope of the color{magnitude relation

is so shallow, even a large change in magnitudes produces only a small shift in the zero-point of the colors.

To illustrate, let (C �C�) = �0:02(M �M�) denote the color{magnitude relation at the present time. Now

let the typical color and magnitude change by setting C� ! C� + ÆC and M� ! M� + ÆM , but assume

that the slope of the color{magnitude relation does not. This corresponds to a shift in the zero-point of

0:02ÆM + ÆC, demonstrating that ÆC dominates the change in the zero point even if it is a factor of ten

smaller than ÆM . (Note that a shallow color{magnitude relation was also obtained with total optical-to-near

infrared colors by Fioc & Rocca-Volmerange 1999).

To account both for selection e�ects and evolution, we have computed maximum likelihood estimates

of the joint color{magnitude{velocity dispersion distribution, allowing for evolution in the magnitudes and

the colors but not in the velocity dispersions: i.e., the magnitudes and colors are assumed to follow Gaussian

distributions around mean values which evolve, say M�(z) = M� � Qz and C�(z) = C� � Pz, but the

spread around the mean values, and the correlations between C and M do not evolve. (The maximum

likelihood technique we use is described in more detail in Paper II.) We have chosen to only present results

for the color{r�-magnitude relation, because, as we argue later, color correlates primarily with �, which is

independent of waveband.

The results are summarized in Table 1. Notice that the colors at redshift zero are close to those of the

Coleman, Wu & Weedman (1980) templates; that the evolution in color is smaller than in magnitude, and

consistent with the individual estimates of the evolution in the di�erent bands (Table 1 of Paper II shows

that Q = 1:15; 0:75 and 0.60 in the g�, i� and z� bands respectively); and that the best �t distributions of
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Fig. 3.| Relation between color and magnitude at �xed velocity dispersion (left) and between color and

velocity dispersion at �xed magnitude (right). In the panel on the left the correlation between color and

magnitude is much weaker in the two subsamples than it is for the whole sample, indicating that the color{

magnitude relation is driven by the dependence of color and magnitude on velocity dispersion. On the other

hand, in the panel on the right, the individual �ts to the two subsamples are indistinguishable from the �ts

to the whole sample, indicating that the correlation between color and � does not depend on magnitude.
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Table 2: Maximum-likelihood estimates of the slopes and zero-points of the color-at-�xed-magnitude and

color-at-�xed-velocity dispersion relations, and the scatter around the mean relations.

Color slope zero-point rms slope zero-point rms

color�r� magnitude color� log
10
�

g� � r� �0:025� 0:003 0.218 0.053 0:26� 0:02 0.154 0.0488

r� � i� �0:012� 0:002 0.085 0.033 0:12� 0:02 0.072 0.0316

r� � z� �0:012� 0:003 0.443 0.051 0:16� 0:02 0.343 0.0485

M� and V� are the same for all three colors, and are similar to the values we found in Paper II.

As discussed in Paper II and Paper III, various combinations of the coeÆcients in Table 1 yield maximum

likelihood estimates of the slopes of linear regressions of pairs of variables. Some of these are summarized in

Table 2. One interesting combination is the relation between color and magnitude at �xed velocity dispersion:
D
C � hCjV i

��M
E

�CjV
=

M � hM jV i

�MjV
�

(�CM � �CV �VM )p
(1� �2VM )(1� �2CV )

at �xed V = log10 �:

Inserting the values from Table 1 shows that, at �xed velocity dispersion, there is little correlation between

color and luminosity. In other words, the color{magnitude relation is almost entirely due to the correlation

between color and velocity dispersion.

Figure 3 shows this explicitly. The dashed and dot{dashed lines show �ts to the relation between color

and magnitude at low (circles) and high (crosses) velocity dispersion (in the plots, the maximum likelihood

estimates of the evolution in color and magnitude have been removed). The solid line shows the color{

magnitude relation for the full sample which includes the entire range of �; it is considerably steeper than

the relation in either of the subsamples. The panel on the right shows the color�� relation at low (circles)

and high (crosses) luminosity. The individual �ts to the two subsamples are indistinguishable from the �ts

to the whole sample.

This is also true for the color{size relation, although we have not included a �gure showing this. One

consequence of this is that residuals from the Faber{Jackson relation correlate with color, whereas residuals

from the luminosity{size relation do not. We will return to this later. Because the primary correlation is

color with velocity dispersion, in what follows, we will mainly consider the color{� relation, and residuals

from it.

While the color{� provides clear evidence that the colors in the high redshift population in our sample are

bluer than in the nearby population, quantifying how much the colors have evolved is more diÆcult, because

the exact amount of evolution depends on the K-correction we assume. Appendix A of Paper I discusses

how we make our K-corrections, as well as what this choice implies for our estimated color evolution.

2.2. Galaxy colors: environment

Having shown that the colors are evolving, and that, to a reasonable approximation, this evolution

a�ects the amplitude but not the slope of the color{magnitude and color{� relations, we now study how

the colors depend on environment. To present our results, we assume that environmental e�ects a�ect the

amplitude more strongly than the slope of the color{� relation. Therefore, we assume that the slope is �xed,
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Fig. 4.| Residuals from the color-� relation as a function of local density. At each bin in density, symbols

showing results for higher redshifts have been o�set slightly to the right. Galaxies at higher redshifts are

bluer|hence the trend to slope down and to the right at �xed N . The (r� � z�) colors of galaxies in dense

environments are redder than those of their counterparts in less dense regions, although the trend is weaker

in the other colors. Although the g� � r� color appears to show the opposite trend, note that the lowest

redshift densest bin is the one in which our grouping algorithm is least secure.
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Fig. 5.| As for the previous �gure, but now showing the thickness of the color-� relation as a function of

local density.
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and �t for the shift in color which best describes the subsample. Figure 4 shows the results. As in Papers I,

II and III, galaxies were divided into di�erent bins in local density, and then further subdivided by redshift

(the local density was estimated using the number of near neighbours in coordinate and color space, see

Paper I for details). Di�erent symbols in each bin in local density show results for the di�erent redshifts;

higher redshifts are o�set slightly to the right. This makes trends with evolution easy to separate from those

due to environment. In addition to the evolutionary trends we have just discussed, the �gure shows that the

r� � z� colors are redder in denser regions (bottom panel), but that this trend is almost completely absent

for the other colors. The g� � r� color appears to be slightly bluer in the densest region lowest redshift bin,

where our grouping procedure is least secure.

The tightness of the colour-magnitude relation of cluster early-types has been used to put constraints on

the ages of cluster early-types (e.g., Kodama et al. 1999). Figure 5 shows how the thickness of this relation

depends on environment. The plot shows no evidence that the scatter around the mean relation decreases

slightly with increasing density; a larger sample is needed to make conclusive quantitative statements about

this, and about whether or not the scatter around the mean relation depends more strongly on environment

at low than at high redshift.

2.3. Color gradients and the color{magnitude relation

It has been known for some time that giant early-type galaxies are reddest in their cores and become

bluer toward their edges (e.g., de Vaucouleurs 1961; Sandage & Visvanathan 1978a). Figure 3 of Paper I

shows that the half-light angular sizes of the galaxies in our sample are indeed larger in the bluer bands.

Figure 6 shows how the e�ective physical radii of the galaxies in our sample change in the four bands. On

average, early-type galaxies have larger e�ective radii in the bluer bands. This trend indicates that there

are color gradients in early-type galaxies. The distribution of size ratios does not correlate with luminosity.

However, the ratio of the e�ective size in the g� and r� bands is slightly larger for bluer galaxies than for

redder ones, suggesting that color gradients are stronger in the galaxies which are bluer. In addition the

scatter around the mean ratio is slightly larger for the bluer galaxies.

As Scodeggio (2001) emphasizes, if the e�ective sizes of galaxies depend on waveband, then the strength

of the color-magnitude relation depends on how the color is de�ned. Therefore, we have tried �ve di�erent

de�nitions for the color. The �rst uses the total luminosities one infers from �tting a de Vaucouleurs model

to the light in a given band. The `total' colors de�ned in this way are relatively noisy, because they depend

on independent �ts to the surface brightness distributions in each band (c.f. discussion in Paper I). Since

the half-light radius is larger in the bluer bands, a greater fraction of the light in the redder bands comes

from regions which are closer to the center than for the bluer bands. Therefore, this total color can be quite

di�erent from that which one obtains with a �xed angular or physical aperture.

To approximate �xed physical aperture colors, we have integrated the de Vaucouleurs pro�les in the

di�erent bands assuming a tophat �lter (since this can be done analytically) of scale f times the e�ective

r� radius, Ro(r
�), for a few choices of f . The resulting colors depend on f , and the slope of the associated

color magnitude relation decreases as f decreases. We have arbitrarily chosen to present results for f = 2.

These are not quite �xed aperture colors, since the e�ective angular aperture size varies from one galaxy to

another, but, for any given galaxy, the aperture size is the same in all the bands (i.e., it is related to the

e�ective radius in r�).

A third color is obtained by using the light within a �xed angular aperture which is the same for all
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Fig. 6.| Di�erences between the e�ective sizes of galaxies in di�erent bands; the blue light is less centrally

concentrated than the red light.
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galaxies. The `�ber' magnitudes output by the SDSS photometric pipeline give the integrated light within

a three arcsec aperture, and we use these to de�ne the `�ber' color.

A fourth color is that computed from the Petrosian magnitudes output by the SDSS photo pipeline

(Stoughton et al. 2002).

A �fth color uses the `model' magnitudes output by the SDSS photometric pipeline. These are close to

what one might call �xed aperture colors, because they are obtained by �nding that �lter which, given the

signal-to-noise ratio, optimally detects the light in the r� band, and then using that same �lter to measure

the light in the other bands (which is one reason why they are less noisy than the total color de�ned above).

(By de�nition, the model and total de Vaucouleurs magnitudes are the same in r�. They are di�erent in

other bands because the e�ective radius is a function of wavelength. We have veri�ed that the di�erence

between these two magnitudes in a given band correlates with the di�erence between the e�ective radius in

r� and the band in question.) In this respect, the model colors are similar to those one might get with a

�xed physical aperture (they would be just like the �xed physical aperture colors if the optimal smoothing

�lter was a tophat). These, also, are not �xed angular aperture colors, since the e�ective aperture size varies

from one galaxy to another, but, for any given galaxy, the aperture is the same in all the bands.

A �nal possibility is to use `spectral magnitudes'; these can be made by integrating up the light in the

spectrum of each galaxy, weighting by the di�erent pass-band �lters. Whereas the other �ve colors require a

good understanding of the systematics of the photometric data sets, this one requires a similar understanding

of the spectroscopic data sets also. We have not done this here, although it should be possible in the near

future.

The resulting g��r� color-magnitude relations are shown in Figure 7. The x-axis in the top two panels is

the de Vaucouleurs magnitude in r�, whereas it is the �ber magnitude in r� in the third panel, the Petrosian

r� magnitude in the fourth panel, and the model r� magnitude in the bottom panel. So that evolution e�ects

do not combine with the magnitude limit of our sample to produce a shallow relation, we divided our sample

into two: a low-redshift sample, which includes all galaxies at z � 0:08, and a high-redshift z � 0:16 sample.

For each de�nition of color, we computed the slope and amplitude of the color{magnitude relation in the

low redshift sample. This slope is shown in the top left corner of each panel. We then required the slope of

the high redshift sample to be the same (recall from Figure 1 that this is a good approximation); the o�set

required to get a good �t is shown in the bottom left of each panel. This is the quantity which provides

an estimate of how much the colors have evolved. The two thin solid lines in each panel show the low- and

high-redshift color{magnitude relations computed in this way. For comparison, the dashed line shows a �t

to the full sample, ignoring evolution e�ects; in all the panels, it is obviously much atter than the relation

at low redshift.

The �gure shows clearly that the slope of the color-magnitude relation depends on how the color was

de�ned: it is present when �xed-apertures are used (e.g., bottom panel), and it is almost completely absent

when the total light within the de Vaucouleurs �t is used (top panel). Our results are consistent with those

reported by Okamura et al. (1998) and Scodeggio (2001). Note that one's inference of how much the colors

have evolved, �(g� � r�), also depends on how the color was de�ned.

A similar comparison for the correlation between color and velocity dispersion � is presented in Figure 8.

We have already argued that color�� is the primary correlation; this relation is also considerably less sensitive

to the di�erent de�nitions of color. However, it is sensitive to evolution: a �t to the full sample gives a slope

of 0.14, compared to the value of 0.23 for the low redshift sample. Because the mean color�� relation is

steeper than that between color and magnitude, the change to the slope of the relation is less dramatic. The
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Fig. 7.| Color-magnitude relations associated with various de�nitions of magnitude and g� � r� color.

Top-left of each panel shows the slope determined from a low redshift subsample. Fixed-aperture colors

(bottom panel) give steeper color{magnitude relations; the correlation is almost completely absent if colors

are de�ned using the total magnitudes (top panel). Bottom left of each panel shows the zero-point shift

required to �t the higher redshift sample. This shift is an estimate of how the colors have evolved|it, too,

depends on how the color was de�ned. Dashed lines show �ts to the whole sample; because they ignore

the evolution of the colors, they are signi�cantly shallower than �ts which are restricted to a small range in

redshifts, for which neglecting evolution is a better approximation.
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Fig. 8.| As for the previous �gure, but now showing how the color-� relation varies as the de�nition of

g� � r� color changes.
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zero-point shifts, which estimate the evolution of the color, are comparable both for the color{magnitude

and the color�� relations, provided the SDSS model colors are used (bottom panel).

3. Line-indices: Chemical evolution and environment

We now turn to a more detailed study of the spectra in our sample. To measure spectral features reliably

requires a spectrum with a higher signal-to-noise ratio than we have for any individual galaxy in our sample.

Section 3.1 describes the procedure we have adopted to deal with this. All the line indices we study below

correlate with velocity dispersion �. Because � correlates with luminosity, the magnitude limit of our sample

means that we have no objects with low velocity dispersions at high redshifts. By presenting results at �xed

velocity dispersion, our analysis of line indices should not be biased by this selection: this is the subject of

Section 3.2.

3.1. Composite spectra of similar objects

The typical signal-to-noise ratio of the spectra in our sample is about 15 (Figure 18 in Paper I). To

measure spectral features reliably requires a spectrum with S=N � 100 (e.g. Trager et al. 1998), so we have

adopted the following procedure.

We have a large number of galaxies in our sample, many of which have similar luminosities, sizes, velocity

dispersions, and redshifts. By co-adding the spectra of similar galaxies, we can produce a composite spectrum

with a considerably higher S=N ratio. Since we wish to increase the S=N ratio by a factor of about seven, we

need at least �fty galaxies per composite spectrum. On the other hand, we do not want to co-add spectra of

galaxies which di�er considerably from each other. Therefore, we divided the galaxies in our sample into �ve

bins each of redshift, luminosity, velocity dispersion, e�ective radius, and density, and co-added the spectra

of all the galaxies in each bin. This gave about 200 composite spectra, with varying numbers of galaxies

contributing to each. We then excluded from further consideration all composites which had S=N < 50.

Figure 9 shows a selection of the 182 composite spectra with S=N > 50 (for given bins in � and z, we show

the composite spectrum which has the median S=N ratio). The line at the bottom of each panel shows the

rms scatter of the individual spectra used to make the composite spectrum. These 182 composite spectra, the

scatter, and the errors, as a function of restframe wavelength are available electronically; interested readers

should contact the �rst author directly.

We estimated the Mg2, Mgb, H� and hFei line-indices in the higher signal-to-noise composite spectra

following methods outlined by Trager et al. (1998). (Analysis of the properties of early-type galaxies

using these higher signal-to-noise composite spectra is on-going.) The estimated indices were aperture-

corrected following J�rgensen (1997): Mg2 = Mgest
2

+ 0:04 log
10
[1:5=(ro=8)], H� = Hest

� [1:5=(ro=8)]�0:005,

and hFei = hFeiest[1:5=(ro=8)]0:05 and hMgbi = hMgbiest[1:5=(ro=8)]0:05. (Because the indices were measured

for co-added spectra, we use the mean values of ro in each bin to make the aperture correction.) In addition,

the observed line indices of an individual galaxy are broadened by the velocity dispersion of the galaxy.

Simulations similar to those we used to estimate the velocity dispersion itself (see Appendix B in Paper I)

were used to estimate and correct for the e�ect of the broadening. For all the indices presented here, the

required corrections increase with increasing �. (We use the mean value of � in each bin to make the

corrections.) Whereas the corrections to Mg2 and H� are small (on the order of a percent), the corrections

to Mgb and Fe are larger (on the order of ten percent).
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Fig. 9.| Composite spectrum obtained by co-adding the spectra of galaxies with similar redshifts, velocity

dispersions, absolute magnitudes, e�ective radii and local densities. The line at the bottom of each panel

shows the rms scatter of the individual spectra used to make the composite spectrum. The signal-to-noise

ratio of the composite spectrum is also shown.
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Fig. 9. { Continued.
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Fig. 9. { Continued.
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Fig. 9. { Continued.



{ 21 {

Fig. 9. { Continued.
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Fig. 9. { Continued.
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Fig. 10.| Mg2 as a function of �. Stars, �lled circles, diamonds, triangles, squares and crosses show results

from coadded spectra of similar galaxies in successively higher redshift bins (z < 0:075, 0:075 < z � 0:1,

0:1 < z � 0:12, 0:12 < z � 0:14, 0:14 < z � 0:18, and z > 0:18). Symbol with bar in bottom corner shows

the typical uncertainty on the measurements. At �xed redshift, Mg2 increases with increasing �. At �xed

�, the spectra from higher redshift galaxies are weaker in Mg2. Text at top right shows the shift between

the lowest and highest redshift bins averaged over the mean shifts at log
10
� = 2:2, 2.3 and 2.4. We also

performed linear �ts to the relations at each redshift, and then averaged the slopes, zero-points and rms

scatter around the �t. Solid line shows the mean relation obtained in this way, and text at top shows the

averaged slope and averaged scatter.

Table 3 summarizes our line-index measurements. Column 1) gives the ID number of the composite

spectrum; columns 2-6) give the centers of the bins in velocity dispersion, size, absolute magnitude, redshift

and local density which were used to de�ne which galaxies contribute to the composite; and columns 7-14)

give the measured strength of the index and the associated error on the measurement, for H� , Mg2, Mgb
and hFei.

3.2. Correlations with velocity dispersion

Figures 10 and 11 show how the line-indices in Table 3 correlate with velocity dispersion. In all panels,

stars, �lled circles, diamonds, triangles, squares and crosses show the redshift bins z < 0:075, 0:075 < z � 0:1,

0:1 < z � 0:12, 0:12 < z � 0:14, 0:14 < z � 0:18, and z > 0:18. The median redshifts in these bins are

0.062, 0.086, 0.110, 0.130, 0.156 and 0.200. For clarity, at each bin in velocity dispersion, the symbols for

successive redshift bins have been o�set slightly to the right from each other. This should help to separate

out the e�ects of evolution from those which are due to the correlation with �. The solid line and text in

each panel shows the relation which is obtained by performing simple linear �ts at each redshift, and then

averaging the slopes, zero-points, and rms scatter around the �t at each redshift. Text at top right of each

panel shows the shift between the lowest and highest redshift bins, averaged over the values at log10 � = 2:2,

log10 � = 2:3 and log10 � = 2:4. Roughly speaking, this means that the shifts occur over a range of about

0:2� 0:06 = 0:14 in redshift, which corresponds to a time interval of 1.63 Gyr.
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Fig. 11.| Same as previous �gure, but now showing the spectral line-indices Mgb, H�, hFei, and the ratio

[Mgb/Fe] (top to bottom) as functions of �. At �xed redshift, Mgb and hFei increase, whereas H� decreases

with increasing �. At �xed �, the spectra from higher redshift galaxies are weaker in both Mg2 and hFei,

but stronger in H�. Text at top right shows the shift between the lowest and highest redsh�t bins averaged

over the values at log10 � = 2:2, 2.3 and 2.4.
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Figure 10 shows the well-known correlation between Mg2 and �: at �xed redshift, Mg2 / �0:20�0:02

with a scatter around the mean relation at each redshift of 0.011 mags. The �t we �nd is similar to that

found in previous work based on spectra of individual (as opposed to coadded) galaxies (e.g., J�rgensen

1997; Bernardi et al. 1998; Pahre et al. 1998; Kuntschner 2000; Blakeslee et al. 2001; Bernardi et al. 2002),

although the scatter we �nd is somewhat smaller. The slope of our �t is shallower than that reported by

Colless et al. (1999), but this may be consequence of our decision to perform linear regression, rather than

maximum-likelihood, �ts. (Maximum-likelihood �ts are diÆcult at the present time because our bins in

luminosity are rather large. We plan to make the maximum-likelihood estimate when the sample is larger,

so that �ner bins in luminosity can be made.)

Although the magnitude limit of our sample makes it diÆcult to study the evolution of the Mg2 � �

relation, a few bins in � do have galaxies from a range of di�erent redshifts. Recall that, for the purposes

of presentation, the points in each bin in � have been shifted to the right by an amount which depends on

the redshift bin they represent. When plotted in this way, the fact that the points associated with each bin

in � slope down and to the right suggests that, at �xed �, the higher redshift galaxies have smaller values

of Mg2. Large values of Mg2 are expected to indicate either that the stellar population is metal rich, or old,

or both. Thus, in a passively evolving population, the relation should be weaker at high redshift. This is

consistent with the trend we see. The average value of Mg2 decreases by about (0:015�0:004) mags between

our lowest and highest redshift bins (a range of about 1.63h�1Gyr). We will return to this shortly.

The top panel of Figure 11 shows that, at �xed redshift, Mgb / �0:32�0:03, with a scatter of 0.020.

This is consistent with the scaling reported by Trager et al. (1998). [A plot of Mgb versus Mg2 is well

�t by log10Mgb = (1:41 � 0:18)Mg2 + 0:26; this slope is close to the value 0:32=0:20 one estimates from

the individual Mgb � � and Mg2 � � relations. It is also consistent with Figure 58 in Worthey (1994).]

As was the case for Mg2, our data indicate that, at �xed velocity dispersion, Mgb is weaker in the higher

redshift population. The average di�erence between our lowest and highest redshift bins is 0:030 � 0:012.

This corresponds to a fractional change in Mgb of 0.07 over about 1.63h�1Gyr. In contrast Bender, Ziegler

& Bruzual (1996) �nd that Mgb at z = 0:37 is smaller by 0.3�A compared to the value at z = 0. This is a

fractional change of about 0.07 but over a redshift range which corresponds to a time interval of 4h�1Gyr.

Bender et al. also reported weak evidence of di�erential evolution: the low � population appeared to have

evolved more rapidly. Our Mg2 � � and Mgb� � relations also show some evidence of such a trend.

Colless et al. (1999) de�ne Mgb0 = �2:5 log10(1 � Mgb=32:5), and show that their data are well �t

by Mgb0 / (0:131� 0:017) log10 � � (0:131� 0:041) with a scatter around the mean relation of 0.022 mags.

Kuntschner (2000) shows that the galaxies in the Fornax cluster follow this same scaling, although the scatter

he �nds is 0.011 mags. Our coadded spectra are also consistent with this: we �nd Mgb0 / (0:15�0:02) log10 �,

with a scatter of 0.010 mags. [A linear regression of the values of Mg2 and Mgb0 in our coadded spectra

is well �t by Mg2 = (1:70� 0:30)Mgb0 � 0:01; this is slightly shallower than the relation found by Colless

et al.: Mg2 = 1:94Mgb0 � 0:05.] The Mgb0 � � relation in our data evolves: in the highest redshift bins it

is about (0:013� 0:002) mags lower than in the lowest redshift bins. Colless et al. �nd that in the single

stellar population models of both Worthey (1994) and Vazdekis et al. (1996), changes in age or metallicity

a�ect Mg2 about twice as strongly as they do Mgb0. Figure 10 suggests that Mg2 has weakened by �0:015,

so we expect Mgb0 to have decreased by about �0:007. Therefore, this also suggests that the Mgb (or Mgb0)

evolution we see is large.

The second panel in Figure 11 shows that, at �xed redshift, H� / ��0:24�0:03 with a scatter of 0.027.

This is consistent with J�rgensen (1997), who found log10H� = (�0:231 � 0:082) log10 � + 0:825, although

our scatter is smaller then her value of 0.061. At �xed �, H� is stronger in the higher redshift spectra. On
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average, the value of H� increases by about 0:058� 0:011 between our lowest and highest redshift bins. An

increase of star formation activity with redshift is consistent with a passively evolving population. When

a larger sample is available, it will be interesting to see if the scatter in H� at �xed � also increases with

redshift.

The third panel of Figure 11 shows that, at �xed redshift, hFei / �0:11�0:03 with a scatter of 0.011.

This lies between the 0:075� 0:025 scaling and scatter of 0.041 found by J�rgensen (1997), and that found

by Kuntschner (2000): hFei / �0:209�0:047. At �xed �, hFei is slightly smaller at higher redshift: the change

in log
10
hFei is 0:017� 0:009.

The ratio Mgb/hFei is sometimes used to constrain models of how early-type galaxies formed (e.g.,

Worthey, Faber & Gonzalez 1992; Thomas, Greggio & Bender 1999; but see Matteucci, Ponzone & Gibson

1998). In our coadded spectra, log
10
Mgb=hFei = (0:22� 0:04) log

10
�� 0:34 with a scatter of 0.015 (bottom

panel of Figure 11). The slope of this relation equals the di�erence between the slopes of the Mgb� � and

hFei�� relations, and there is marginal evidence of evolution: the change in Mgb/hFei is 0:015�0:010. This

correlation should be interpreted as evidence that the contribution of Fe to the total metallicity is depressed,

rather than that alpha elements are enhanced, at high � (e.g., Worthey et al. 1992; Weiss, Peletier &

Matteucci 1995; Greggio 1997; Trager et al. 2000a).

If the evolution in Mg and Fe is due to the same physical process, then one might have wondered if

residuals from the Mgb � � relation are correlated with residuals from the hFei � � relation. This will be

easier to address when the sample is larger. At the present time, we see no compelling evidence for such a

correlation|we have not included a �gure showing this explicitly. In addition, at any given redshift, galaxies

which are richer in Mg2 or hFei than they should be (given their velocity dispersion), are neither more nor

less likely to be richer in H� than expected|recent star formation is not correlated with metallicity.

3.3. Line-indices and color

Because both the colors and the line indices are evolving, it is interesting to see if the evolution in color

and in the indices is similar. The line indices and color both correlate with �, and we know how much the

individual relations evolve, so we can estimate the evolution in the index{color relation as follows.

Let y0 = sx0+ c0 denote the mean relation between line index y and color x at z = 0. Because we know

that line indices and color both correlate with �, and we know how much the individual relations evolve,

we can estimate the evolution in the index{color relation by setting y(z) = y0 + �y = sx0 + c0 + �y =

sx(z) + c0 + �y � s�x. For x = (g� � r�) and y = Mg
2
we must set �y = �0:015, �x = �0:042, and

s = 0:20=0:26 (from Table 1 and Figure 10). Thus the slope of Mg2 versus g
� � r� color should have a slope

of 0.77 and the zero-point is expected to evolve by 0.017 between the lowest and highest redshift bins in our

sample. A similar analysis for H� and g��r� suggests that slope is expected to be �0:92, and the zero point

should evolve by 0:019, whereas the slope of the log10hFei{color relation should be 0.42 with essentially no

evolution. (These estimates assume that the slopes of the individual relations do not evolve. Bender et al.

(1996) present some evidence that Mgb at high � evolves less than at low �, suggesting that the slope of the

Mgb� � relation was steeper in the past. A comparison of the log10 � = 2:3 and 2.4 bins in Figure 11 is in

approximate agreement with this. Because these estimates are of the order of the error in the measurements,

we have not worried about the e�ects of a change in slope|but with a larger sample, this will be important.)

To check the accuracy of these estimates Figure 12 shows plots of the line indices versus g� � r� color.
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Fig. 12.| Line indices versus color. Dot-dashed lines show the slope one expects if there were no scatter

around the mean color-� and lineindex{� relations, and solid lines show the linear relation which provides

the best �t to the points. Text along the each dot-dashed line indicates the typical value of the velocity

dispersion at that location in line-index{color space. Crosses in the bottom of each panel show the typical

uncertainties. The error in the color is supposed to represent the actual uncertainty in the color, rather than

how well the mean color in each bin has been measured.
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(Recall that the line indices were computed from coadded spectra of galaxies which had the same Ro, � and

r� luminosity. The color here is the mean color of the galaxies in each of those bins.) The solid lines show

best �ts to the points contributed by the median redshift bins (triangles and diamonds). The dot-dashed

lines in each panel show the slopes estimated above; they are not far o� from the best-�t lines. (The text in

each panel indicates the typical velocity dispersion associated with di�erent locations in index{color space.)

The estimates of the evolution of the zero-point also appear to be reasonably accurate. The higher redshift

crosses in the Mg2 panel appear to lie about 0.02 mags above the lower redshift stars; the di�erence between

the low and high redshift populations is obvious. In contrast, the evolution in H� and color conspire so that

there is little net o�set between the low and high redshift populations (note that an o�set of 0.02 mags in

Mg2 is much more obvious than an o�set of 0.02 in H�). This suggests that the evolution in color and in

H� are driven by the same process. And �nally, there is little or no o�set between the low and high redshift

bins in hFei and g� � r� (bottom panel), as expected.

We have also checked if the residuals from the index{color relations shown in Figure 12 correlate with

local density: they do not.

3.4. Comparison with stellar population models

The di�erent line index{� and color{� relations are evolving. Stellar population models can be used to

study what the evolution we see implies.

The predictions of single age stellar population models (e.g., Bruzual & Charlot 1993; Worthey 1994;

Vazdekis et al. 1996; Tantalo et al. 1998) are often summarized as plots of H� versus Mgb (or Mg2) and hFei.

The usual caveats noted by these authors about the limitations of these models, and the assumption that

all the stars formed in a single burst, apply. In addition, comparison with data is complicated because the

models assume that the ratio of �-elements to Fe peak elements in early-type galaxies is the same as in the

Sun, whereas, in fact, it di�ers from the solar value by an amount which depends on velocity dispersion (e.g.,

Worthey et al. 1992; see bottom panel of Figure 11). We use a simpli�ed version of the method described

by Trager et al. (2000a) to account for this.

Figure 13 shows such a plot. The dotted grids (top and bottom left are the same, as are top and bottom

right) show a single age, solar abundance (i.e., [E/Fe] = 0), stellar population model (from Worthey 1994);

lines of constant age run approximately horizontally (top to bottom show ages of 2, 5, 8, 12 and 17 Gyrs),

lines of constant metallicity run approximately vertically (left to right show [Fe/H] = �0:25, 0, 0.25, 0.5).

Points in the panels on the top show the values of H� and Mgb (left) and hFei (right) for the coadded spectra

in our sample. Di�erent symbols show di�erent redshift bins; the higher redshift population (squares and

crosses) appears to show a larger range in H� compared to the low redshift population (stars and circles).

Cross in each panel shows the typical uncertainty on the measurements.

The heavy dot-dashed lines in the top panels show the relation between H� and Mgb or hFei one predicts

if there were no scatter around the individual line index{� relations (shown as solid lines in Figure 11):

H� / Mgb�0:75 and H� / hFei�2:2. We have included them to help disentagle the evolution we saw in the

individual line index{� relations from the e�ect of the magnitude limit. The text shows the typical velocity

dispersion associated with the location in `index{index' space. The evolution in the Mgb� �, hFei � �, and

H� �� relations suggest that the higher redshift sample should be displaced upwards and to the left, with a

net shift in zero-point of about 0.03 and 0.02 in the upper left and right panels of Figure 13. (We estimate

these shifts similarly to how we estimated the evolution in the line index{color relations.)
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Fig. 13.| H� versus Mgb (left) and hFei (right) for the coadded spectra in our sample. Di�erent symbols

show di�erent redshift bins; the higher redshift population (squares and crosses) appears to show a larger

range in H� compared to the low redshift population (stars and circles). Cross in each panel shows the

typical uncertainty on the measurements. Dotted grid shows a single age, solar abundance (i.e., [E/Fe] = 0),

stellar population model (from Worthey 1994); lines of constant age run approximately horizontally (top to

bottom show ages of 2, 5, 8, 12 and 17 Gyrs), lines of constant metallicity run approximately vertically (left

to right show [Fe/H] = �0:25, 0, 0.25, 0.5). The two top panels provide di�erent estimates of the age and

metallicity, presumably because the [E/Fe] abundances in our data are di�erent from solar. In the bottom

panels, this di�erence has been accounted for, and the age and metallicity estimates agree. Dot-dashed line

in top panels shows what one expects if there is no scatter around the line index{� relations (solid lines in

Figure 11); text shows the typical velocity dispersion associated with the location in `index{index' space.
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Fig. 14.| Line indices H� and hFei versus Mg2 for the coadded spectra in our sample. Symbols (same as

previous �gure) show results for di�erent redshift bins. Dot-dashed line shows the relation one predicts if

there were no scatter around the individual line index{� relations; text shows the typical velocity dispersion

associated with the location in `index{index' space. Evolution is expected to move points upwards and to the

left for H� versus Mg2 (top panels), but downwards and left, and along the dot-dashed line in the case of hFei

and Mg2 (bottom panels), although selection e�ects make these trends diÆcult to see. Dotted grids show

the same single stellar population model as in the previous �gure (from Worthey 1994). Age and metallicity

estimates in the top panels are inconsistent with those in the bottom panels if solar abundance is assumed

(left panels), but the estimates agree once di�erences in abundances have been accounted for (right panels).
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Although the expected evolution is slightly smaller than the typical uncertainty in the measurements,

the top two panels in Figure 13 do appear to show that the high redshift population (squares and crosses)

is displaced slightly upwards. The shift to the left is not apparent, however, because of the selection e�ect:

evolution moves the high � objects of the high redshift sample onto the the lower � points of the low redshift

sample, but the low � objects at higher redshift, which would lie clearly above and to the left, are not seen

because of the selection e�ect. Note that the selection e�ect works so that evolution e�ects are suppressed,

rather than enhanced in plots like Figure 13; therefore, a simple measurement of evolution in the upper

panels should be interpretted as a lower limit to the true value.

The top two panels show that our sample spans a range of about 0.3 or more in metallicity, and a

large range of ages. However, notice that the two panels provide di�erent estimates of the mean ages and

metallicities in our sample. This is because the [E/Fe] abundances in our data are di�erent from solar.

Trager et al. (2000a) describe how to correct for this. Our measurement errors in Mg and Fe are larger than

theirs, so we have adopted the following simpli�ed version of their prescription.

Let [Z(H�; hFei)/H] denote the estimate of the metallicity given by the top right panel of Figure 13:

this estimate uses the observed values of H� and hFei, and the Worthey (1994) solar abundance ratio

models. Trager et al. (2000a) argue that non-solar abundances change the relation between [Fe/H] and

the true metallicity [Z/H]: [Fe=H] = [Z=H] � A[E=Fe], where A � 0:93. Trager et al. (2000b) argue

that [E=H] � 0:33 log
10
� � 0:58, and that the relation is suÆciently tight that one can substitute � for

[E/Fe]. Although we have not measured this relationship between [E/Fe] and velocity dispersion in our

sample, we assume it is accurate. This allows us to de�ne a corrected metallicity [Z/H]corr � [Z(H� ; hFei)/H]

+0:33A(log10 ��0:58). Trager et al. (2000a) also argue that correcting for nonsolar [E/Fe] makes a negligible

change to H�. Therefore, we combine the measured value of H� with [Z/H]corr to compute a corrected age

�corr. We then use Worthey's model with these corrected ages and metallicities to obtain corrected values of

Mgb and hFei. These are plotted in the bottom panels. By construction, the values of H� in all four panels

are the same, and the age and metallicity estimates in the bottom two panels agree. The di�erences between

our top and bottom panels are similar to the di�erences between Figures 1 and 3 of Trager et al. (2000a),

suggesting that our simple approximate procedure is reasonably accurate.

We apply the same correction procedure to plots of H� � Mg2 and hFei � Mg2 in Figure 14. The

dot-dashed lines in the panels on the left show log10H� / �1:20Mg2 and log10hFei / 0:55Mg2. Matteucci

et al. (1998) report that a �t to a compilation of hFei �Mg2 data from various sources has slope 0.6. The

dot-dashed line does not appear to provide a good �t in the top panel, although this may be due to a

combination of evolution and selection e�ects: �tting the relation separately for di�erent redshift bins and

averaging the results yields a line which is more like the dot-dashed line.

The expected evolution is upwards and to the left for H� �Mg2 and down and left for hFei�Mg2, with

net shifts in zero-points of 0:040 and �0:009. Thus, in the bottom panel, evolution moves points along the

dot-dashed line. As with the previous plot, the selection e�ect makes evolution diÆcult to see. The dotted

grid shows the Worthey (1994) model for these relations. Comparison of the two bottom panels suggests

that much of the scatter in the observed hFei �Mg2 relation is due to di�erences in enhancement ratios.

We can now use the models to estimate the mean corrected ages and metallicities of the galaxies in our

sample as a function of redshift. The mean metallicity is 0.33 and shows almost no evolution. The mean

age in our lowest redshift bin (stars, median redshift 0.06) is 8 Gyrs, whereas it is 6 Gyrs in the highest

redshift bin (crosses). The redshift di�erence corresponds to a time interval of 1.63 Gyr; if the population

has evolved passively, this should equal the di�erence in ages from the stellar population models. While the
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numbers are reasonably close, it is important to note that, because of the magnitude limit, our estimates of

the typical age and metallicity at high redshift are biased towards high values, whereas our estimate of the

evolution relative to the population at low redshift is probably biased low. Nevertheless, it is reassuring that

this estimate of a formation time of 8 or 9 Gyrs ago is close to that which we use to make our K-corrections.

3.5. Dependence on environment

We now turn to a study of how the coadded spectra depend on environment. Figures 15 and 16

show the strength of Mg2 and H� in a few small bins in �, as a function of local density. The di�erent

symbols in each density bin represent composite spectra from di�erent redshifts|higher redshift bins have

o�set slightly to the right. This allows us to separate the e�ects of evolution from those of environment.

Figure 15 shows that, at �xed �, Mg2 decreases with redshift. At any given redshift, the strength of Mg2 is

independent of local density. (Our sample is not large enough to say with certainty if the evolution depends

on environment.) A similar plot for H� also shows strong evolution with redshift, and no dependence on

environment (Figure 16). Similar plots of hFei and [Mg2/Fe] also show little if any dependence on redshift

and no dependence on environment, so we have not shown them here.

We caution that our de�nition of environment is limited, because it is de�ned by early-type galaxies

only. In addition, because we must divide our total sample up into bins in luminosity, size, radius, and

redshift, and then by environment, the statistical signi�cance of the results here would be greatly improved

by increasing the sample size. Analysis of environmental dependence using a larger sample is presented in

Eisenstein et al. (2003).

In conclusion, although we have evidence from the Fundamental Plane that early-type galaxies in dense

regions are slightly di�erent from their counterparts in less dense regions (Figure 9 in Paper III; also see

Figure 10 in Paper I), these di�erences are suÆciently small that the strengths of spectral features are

hardly a�ected (Figures 15 and 16). However, the coadded spectra provide strong evidence that the chemical

composition of the population at low and high redshifts is di�erent (Figures 10{14).

4. Discussion and conclusions

We have studied � 9000 early-type galaxies over the redshift range 0 � z � 0:3 using photometric

(in the g�, r�, i� and z� bands) and spectroscopic observations. The colors of the galaxies in our sample

are strongly correlated with velocity dispersion|redder galaxies have larger velocity dispersions (Section 2).

The color{magnitude and color{size relations are a consequence of the fact that M and Ro also correlate

with � (Figure 3). The strength of the color{magnitude relation depends strongly on whether or not �xed

apertures were used to de�ne the colors, whereas the color�� relation appears to be less sensitive to these

di�erences (Figures 7 and 8). At �xed velocity dispersion, the population at high redshift is bluer than

that nearby (Figures 1 and 2), and the evolution in colour is signi�cantly less than that of the luminosities

(Table 1). A larger sample, with well understood K-corrections, is required to quantify if galaxies in denser

regions are slightly redder and more homogeneous or not (Figures 4 and 5).

The SDSS spectra of individual galaxies do not have extremely high values of signal-to-noise (typically

S=N � 15; cf. Figure 18 in Paper I). However, the dataset is so large that we were able to study stellar

population indicators (Mg2, Mgb, hFei and H�) by co-adding the spectra of early-type galaxies which have
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Fig. 15.| Mg2{density relation for the galaxies in our sample. Symbols show the di�erent redshift bins;

higher redshift bins have been o�set slightly to the right. Symbol with bar in bottom right shows the typical

uncertainty on the measurements.
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Fig. 16.| As for the previous �gure, but for the H�{density relation. At �xed velocity dispersion, H� is

slightly higher at high redshift, but there is no signi�cant dependence on environment.
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similar luminosities, sizes, velocity dispersions, environments and redshifts to create composite with higher

S=N spectra. The resulting library of 182 composite spectra, all of which have S=N > 50, and many of

which have S=N > 100, covers a large range of velocity dispersions, sizes and luminosities. It is available

electronically.

All the line indices correlate with velocity dispersion (Section 3): Mg2 / �0:20, Mgb / �0:32, hFei / �0:11,

and H� / ��0:24. These correlations are consistent with those in the literature, although the results from

the literature were obtained from individual, as opposed to coadded, galaxy spectra. The coadded spectra

show no signigicant dependence on environment. However, the spectra show clearly that, at �xed velocity

dispersion, the high redshift population is stronger in H� and weaker in Mg and Fe than the population

at lower redshifts (Figures 10{14). Line-indices also correlate with color: a good approximation to these

correlations is obtained by using the fact that line indices and color both correlate strongly with velocity

dispersion, and ignoring the scatter.

Single burst stellar population models (e.g., Worthey 1994; Vazdekis et al. 1996) allow one to translate

the evolution in the spectral features into estimates of the ages and metallicities of the galaxies in our sample

(e.g., Trager et al. 2000a,b). In our sample, the z � 0:05 population appears to about 8 Gyrs old; the z � 0:2

population in our sample appears to be about 2 Gyrs younger; and the average metallicity appears to be

similar in both populations. The age di�erence is approximately consistent with the actual time di�erence

in the (
m;
�; h) = (0:3; 0:7; 0:7) world model we assumed throughout this paper, suggesting that the

population is evolving passively. Given a formation time, the single burst stellar population models also

make predictions about how the luminosities and colors should evolve with redshift. Our estimates of this

evolution are also consistent with those of a population which formed the bulk of its stars 9 Gyrs ago.

By the time the Sloan Digital Sky Survey is complete, the uncertainty in the K-corrections, which

prevent us at the present time from making more precise quantitative statements about the evolution of the

luminosities and colors, will be better understood. In addition, the size of the sample will have increased

by more than an order of magnitude. This will allow us to provide a more quantitative study of the e�ects

of environment than we are able to at the present time. Most importantly, a larger sample will allow us

to coadd spectra in �ner bins; this will allow us to make maximum-likelihood estimates, rather than simple

linear regression studies, of how features in the spectra correlate with other observables. This should also

allow us to address the important issue of whether or not the most luminous galaxies in the population are

evolving similarly to the faintest.
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